Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
IJID Reg ; 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2242278

ABSTRACT

Background: Emergence of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants may contribute to prolonging the pandemic and increasing morbidity, and mortality related to coronavirus disease 2019 (COVID-19). We describe the dynamics of circulating SARS-CoV-2 variants identified during the different COVID-19 waves that occurred in Mali between April 2021 and October 2021. Methods: We sequenced respiratory SARS-CoV-2 complete spike (S) gene from positive samples. Generated sequences were aligned by Variant Reporter v3.0 using Wuhan-1 strain as a reference. Mutations were noted using the GISAID and Nextclade platforms. Results: Of 16,797 nasopharyngeal swab samples tested, 6.0 % (1008/16,797) were RT-qPCR positive for SARS-CoV-2. Of these, 16.07% (162/1008) had a Ct value ≤ 28 and were amplified and sequenced. We recovered complete S-gene sequence from 80 of 162 [49.8%] samples. We identified seven distinct variants including Delta [62.5%], Alpha [1.2%], Beta [1.2%], Eta [30.0%], 20B [2.5%], 19B and 20A [1.2% each]. Conclusion and perspectives: Our results show the presence of several SARS-CoV-2 variants during COVID-19 waves in Mali between April and October 2021. The continued emergence of new variants highlights the need to strengthen local real-time sequencing capacity, and genomic surveillance for better and coordinated national responses to SARS-CoV-2.

2.
Journal of Biotech Research ; 13:177-188, 2022.
Article in English | ProQuest Central | ID: covidwho-2033805

ABSTRACT

The 3C protease is distinguished from most proteases due to the presence of cysteine nucleophile that plays an essential role in viral replication. This peculiar structure encompassed with its role in viral replication has promoted 3C protease as an interesting target for therapeutic agents in the treatment of diseases caused by human rhinovirus (HRV). However, the molecular mechanisms surrounding the chirality of inhibitors of HRV 3C protease remain unresolved. Herein using in silico techniques such molecular dynamic simulation and binding free estimations via molecular mechanics poisson-boltzmann surface area (MM/PBSA), we present a comprehensive molecular dynamics study of the comparison of two potent inhibitors, SG85 and rupintrivir, complexed with HRV3C protease. The binding free energy studies revealed a higher binding affinity for SG85 of 58.853 kcal/mol than that for rupintrivir of 54.0873 kcal/mol and this was found to be in correlation with the experimental data. The energy decomposition analysis showed that residues Leu 127, Thr 142, Ser 144, Gly 145, Tyr 146, Cys 147, His 161, Val 162, Gly 163, Gly 164, Asn 165, and Phe 170 largely contributed to the binding of SG85, whereas His 40, Leu 127, and Gly 163 impacted the binding of rupintrivir. The results further showed that His 40, Glu 71, Leu 127, Cys 147, Gly 163, and Gyl 164 were crucial residues that played a key role in ligand-enzyme binding, and amongst these crucial residues, His 40, Glu 71, and Cys 147 appeared to be conserved in the active site of HRV-3C protease when bound by both inhibitors. These findings provided a comprehensive understanding of the dynamics and structural features and would serve as guidance in the design and development of potent novel inhibitors of HRV.

3.
Nat Commun ; 13(1): 688, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1671561

ABSTRACT

Disparities in SARS-CoV-2 genomic surveillance have limited our understanding of the viral population dynamics and may delay identification of globally important variants. Despite being the most populated country in Africa, Nigeria has remained critically under sampled. Here, we report sequences from 378 SARS-CoV-2 isolates collected in Oyo State, Nigeria between July 2020 and August 2021. In early 2021, most isolates belonged to the Alpha "variant of concern" (VOC) or the Eta lineage. Eta outcompeted Alpha in Nigeria and across West Africa, persisting in the region even after expansion of an otherwise rare Delta sub-lineage. Spike protein from the Eta variant conferred increased infectivity and decreased neutralization by convalescent sera in vitro. Phylodynamic reconstructions suggest that Eta originated in West Africa before spreading globally and represented a VOC in early 2021. These results demonstrate a distinct distribution of SARS-CoV-2 lineages in Nigeria, and emphasize the need for improved genomic surveillance worldwide.


Subject(s)
COVID-19/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , Adolescent , Adult , Africa, Western , Aged , Aged, 80 and over , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , COVID-19/epidemiology , Child , Child, Preschool , Female , Genome, Viral , Humans , Male , Middle Aged , Mutation , Nigeria/epidemiology , Phylogeny , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Young Adult
4.
Viruses ; 14(1)2022 01 07.
Article in English | MEDLINE | ID: covidwho-1614006

ABSTRACT

In Mali, a country in West Africa, cumulative confirmed COVID-19 cases and deaths among healthcare workers (HCWs) remain enigmatically low, despite a series of waves, circulation of SARS-CoV-2 variants, the country's weak healthcare system, and a general lack of adherence to public health mitigation measures. The goal of the study was to determine whether exposure is important by assessing the seroprevalence of anti-SARS-CoV-2 IgG antibodies in HCWs. The study was conducted between November 2020 and June 2021. HCWs in the major hospitals where COVID-19 cases were being cared for in the capital city, Bamako, Mali, were recruited. During the study period, vaccinations were not yet available. The ELISA of the IgG against the spike protein was optimized and quantitatively measured. A total of 240 HCWs were enrolled in the study, of which seropositivity was observed in 147 cases (61.8%). A continuous increase in the seropositivity was observed, over time, during the study period, from 50% at the beginning to 70% at the end of the study. HCWs who provided direct care to COVID-19 patients and were potentially highly exposed did not have the highest seropositivity rate. Vulnerable HCWs with comorbidities such as obesity, diabetes, and asthma had even higher seropositivity rates at 77.8%, 75.0%, and 66.7%, respectively. Overall, HCWs had high SARS-CoV-2 seroprevalence, likely reflecting a "herd" immunity level, which could be protective at some degrees. These data suggest that the low number of cases and deaths among HCWs in Mali is not due to a lack of occupational exposure to the virus but rather related to other factors that need to be investigated.


Subject(s)
COVID-19/epidemiology , Health Personnel , Occupational Exposure/analysis , Adult , Antibodies, Viral/blood , COVID-19/blood , COVID-19/diagnosis , Female , Hospitals , Humans , Immunoglobulin G/blood , Male , Mali/epidemiology , Odds Ratio , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL